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The class of universality of integrable and isotropic GL(N)  
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Brazil 

Received 15 June 1993 

Abstraci We discuss a class of transfer mahix built by a paRicular combination of isomorphic 
and non-isomorphic G L ( N )  invariant vertex operators. We construct a conformally invariant 
magnet constituted of an alemating of G L ( N )  'spins' operators at different orders of 
representation. The conespnding central charge is calculated by analysing the low-temperahue 
behaviour of the associated Ges energy. We also cnmment on possible extensions of ow results 
for more general cLssses of mixed systems. 

1. Introduction 

One of the most useful methods of constructing an integrable one-dimensional quantum 
spin chain has heen to find solutions of the Yang-Baxter [1,2] equations. In the context 
of the lattice models, such solutions define vertex operators acting on the tensor product of 
two vector spaces V 8 h. of the local states on the horizontal and vertical lines of a given 
site (Y of the two-dimensional lattice. The complete Hilbert space of the model on a lattice 
of L sites is &.=, @hm. The vector space V is an auxiliary space which is useful in the 
definition of the associated transfer matrix. Defining Rlol(p) as such vertex operator, the 
corresponding transfer matrix can be expressed by [2,3] 

T(K)  = T ~ v [ R ~ ~ ( L O R ~ ~ - ~ ( L L )  . . . R l l W ) I  (1) 

where the trace is canied out in the auxiliary space V and p is a variable which parametfizes 
the Yang-Baxter solution. 

A class of important solutions of the Yang-Baxter equation is isomorphic on the 
horizontal and vertical spaces (V = h,) and rational on the spectral parameter p. One 
example is the vertex operator composed of generators which are invariant by some of 
the semi-simple A, D, E Lie algebra at a certain order k of its representation. The main 
feature of these solutions is that they are believed to define conformally invariant quantum 
spin chains 14-61 which realize the class of universality of Wess-Zuminc-Witten-Novikov 
(m) [7] field theories with topological charge i .  Recently, de Vega and Woynarovich 
[SI have pointed out that other interesting classes of conformally invariant models can be 
constmcted. These theories are obtained by combining isomorphic and non-isomorphic 
vertex operators invariant by some group symmetry at different orders of representation. 
As a typical example one can consider an alternating combmation of an isomorphic vertex 
at even sites and non-isomorphic operators at odd sites. Considering that the isomorphic 
(non-isomorphic) vertex operator acts on the vector space V(k)  8 h,") ( V(k)  8 hik')) of order 
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k and k', the theory described above will lead to a mixed magnet chain with 'spin' operators 
of order k and k'. Following this approach, de Vega and Woynorovich [SI have constructed 
an alternating anisotropic Heisenberg chain of spins 112 and 1 and analysed its behaviour 
in the thermodynamic limit. More recently, the central charge of the conformally invariant 
isotropic SU(2) mixed chain has been computed independently in [9,lO] for spins 1/2-1 
and 1/24. respectively. 

Its seems interesting to investigate the critical properties of conformally invariant mixed 
spin chain for a more general class of p u p  symmetry and its possible relations with 
WZWN field theories. In this paper we study an isotropic alternating G L ( N )  model in 
which the isomorphic vertex is in the fundamental representation (k = 1) and the non- 
isomorphic operator is defined in the tensor space product of the fundamental and the order 
k of representations. By using the thermodynamic Bethe ansatz, we have calculated the 
associated central charge in the case of a conformally invariant mixed G L ( N )  system. It 
is noted that this central charge can be decomposed in terms of the conformal anomaly of 
two WZWN theories with different topological charges = 1 and h = k - 1, respectively. 
We also discuss the generalization of our results in the case of semi-simple Lie algebras at 
arbitrary symmehic representation. 

This paper is organized as follows. In section 2 we define the G L ( N )  mixed magnet 
and we discuss its diagonalization by the quantum inverse scattering (QtS) formalism. In 
section 3 we use the thermodynamic Bethe ansatz (TBA) approach in order to investigate 
the low-temperature behaviour of a conformally invariant mixed G L ( N )  system. Section 
4 is devoted to our discussion on possible extensions of the results of section 3 to other 
Lie algebras. Section 5 contains our conclusions. In appendixes A and B we summarize 
some details of the QIS approach and we present extra numerical checks of the finitesize 
behaviour for the ground-state energy, respectively. 

S R Aladim and M J Martins 

2. The mixed G'L(N) integrable model 

A rational G L ( N )  invariant vertex operator has been found by Kulish er al [l l]  in their 
study of group invariant solutions of the Yang-Baxter relation. The G L ( N )  non-isomorphic 
vertex defined on the fundamental and on the symmetric order k of representation is given 
by the expression [l 4 

where ei'(E'j) are the generators of G L ( N )  in the fundamental (order k) representation. 
For the fundamental representation the matrix elements of e'] are (&)u = Si& We also 
notice the identity RI,,(O) = P, where P is the permutation operator P V  @ h, = h. @ V .  

The G L ( N )  mixed system is defined in terms of its transfer matrix of alternating 
isomorphic (k = 1) and non-isomorphic vertex operators by 

TI,&) = Trw)[rl,dp)I r1,xOL) = R ~ , L ( ! - O R ~ , ~ - ~ ( ~ .  . R:,2(~)Rj ,I (~L)  (3) 

where the matrix product and the trace are defined in the auxiliary space V(') of the elements 
e'] and r,&) is the so-called monodromy matrix. The associated one-dimensional quantum 
Hamiltonian acting on the Hilbert space n&.=, h, is determined by the logarithm derivative 
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of the transfer matrix, H1.x = Jd[ln(q&)]lcL,o/dp. By using this relation and some 
properties of the GL(N) group we find 

-Z(l+&) 2 (4)  

where I = 4 J / ( k  + 1)' and we have conveniently added an extra constant -JL(l + 
2 /k  + 1)/2. In thii paper we are interested in the antiferromagnetic properties of this 
model, and therefore we have chosen J = 1. Setting k = 1 in equation (4)  we reproduce 
the results of [12,13] and for N = 2 and k = 2s we recover previous calculations for the 
mixed Heisenberg chain [&lo]. 

The diagonalization of the transfer matrix E,&) (or the one-dimensional Hamiltonian 
H1.k) follows from the generalization of the QIS approach [3] applied to multi-state vertex 
models [13-151. In the QIs construction the definition of the pseudo vacuum and the block 
form of the monodromy matrix are two important ingredients of this method. In our case 
the pseudo vacuum IO) is defmed by 

(5) 

where 10): is the vector of highest weight of the GL(N) algebra at order k of the symmetric 
representation acting on the site LY, namely EA'IO): = k S , & ~ l O ) i .  An important property 
of this state is that ql.~(p)IO) has the following block triangular form 

l o ) = l o ) : ~ l o ) : ~ ' . ' ~ I o ) t ,  @IO), I 

where B'(p) 
Following the QIS machinery [13-151 a certain linear combination of the states 

B I I ( p i ) .  . . Bj*(pi)[O) can be considered as a basis for the eigenstates of the "fer 
matrix, provided that the parameters {p i , .  . . ,pA] satisfy a set of non-linear equations 
denominated Bethe ansatz equations. The technical steps are fairly parallel with those of 
[13-151 and in appendix A we have collected some of the details. Defining the convenient 
shift p: = iAi - r /2 ,  the Bethe ansatz equations are given by 

r ~ , ~ ( p ) l * i f l ,  i = 1 , .  . . , N - 1. 
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where r = 2, . . . , N - 1 and we define M N  = 0. The eigenvalues of the Hamiltonian H1.k 

are parametrized by 

S R Aiadim and M J Maltins 

In principle, the construction discussed above can be carried out for the ‘dual’ one- 
dimensional spin chain. The main task is to find an isomorphic G L ( N )  invariant 
operator R i a ( p )  in the symmetric representation of order k.  Using the approach of [I l l ,  
Johannesson [ 161 has explicitly exhibited such operator. Hence, analogously to equation 
(3). the associated transfer matrix c. , (p)  is expressed by 

~ x . i ( f i )  = Rwtn,i(fi)I (9) k w ( u )  = R ! , ~ ( ~ ~ L ) R ~ , ~ - ~ ( I L ) . . .  R:.~(cL)R~, , ( I I )  

where VCk) is &e space of the matrices E’] of GL(N)  at order k of representation. 
An important property of q,k(p) and Tk.1 (p‘) is their commutativity for arbitrary values 

of the parameters f i  and p’. This property follows from the ‘mixed‘ Yang-Baxter relation 
satisfied by the non-local vertices? R f ( p )  and R i ( p ) .  As a consequence, the Hamiltonians 
Hi,& and Hk.1 can be simultaneously diagonalized and their eigenspectrum are parametrized 
by the same Bethe equations, i.e. equations (7). However, the eigenenergies of &,I [I61 
are expressed in terms of the variables { A j }  by a different function of that of equation (S), 
namely 

At this point, it is important to remark that the transfer matrix Ti,k(p) and its ‘dual’ 
fi,lb) are not rotational invariant in the horizontalhertical space of states. A simple 
way of defining [8] a ‘mixed‘ symmetric transfer matrix T3pym(fi), preserving the rotational 
invariance, is by formally multiplying these two transfer matrices 

Twm(fi) = T~,dfi)Tx.iW. (1 1) 

Due to the commutativity between Ti,&) and %,I (p )  the spectrum of T5Ym(fi) is clearly 
parametrized by the same Bethe ansatz equation and the eigenvalues of the corresponding 
onedimensional Hamiltonian HSp are added, 

In this sense equations (7), (8). (10) and (12) define three families of possible spectrums 
parametrized by a single Bethe ansatz equation. For instance, in the case of small size 
L, one only needs to solve equation (7) and compare it with the exact solution of the 
spectrum of  HI,^ in order to investigate the structure of the variables (A;) which are going 
to parametrize the whole spectrum of all these three families of models. In general, we 
remark that a certain solution (A;] of equation (7) will not necessarily produce the same ith 

t The venex R f b )  acts in the non.locaJ space V(‘) @ h ,  
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state ordered in energy for all these models. The ground state, however, is characterized by 
the same structure of [A;) for all these three families. In the thermodynamic limit, L -+ 00, 

the ground-state solution (A;] is composed by a mixture of real numbers qJ and a set of 
complex roots The complex structure A;,a cluster in the so-called k-string form 

where f; is a real parameter denoting the centre of the k-string. 
In order to calculate the ground-state energy in the L + 00 limit, one has to solve the 

Bethe ansatz equations (7) for the variables r$ and e;. Taking into account equation (13) 
and after some standard manipulations, we are able to compute the following values for the 
ground-state energy per particle 

1 k + l  
N 

&k = -_ 

where @ ( x )  is the Euler psi function. From equation (12) it is clear that ezm = e&k +&I.  
Let us now concentrate our attention on the low-lying excitations of the symmetric mixed 

model. Since the transfer matrix T6Y”’(p) is rotational invariant, its associated quantum spin 
Hamiltonian is a strong candidate to be conformally invariant. We recall that the analysis of 
the critical properties in spin chains depends on the behaviour of its dispersion relation for 
low momenta p .  The computation of the dispersion relation follows the standard formalism 
of perturbing the ground-state structure by holes and smng of arbitrary length (see e.g. 
[12]).  The only subtle fact is that in this alternating mixed system the iota1 momentmn is 
half of that considered in homogeneous models (k  = 1 )  [IO]. Following [12,16,8] we find 
that the dispersion relation for all branches of excitations [12,16] possess the same linear 
behaviour for the total low momenta p 

From equation (16) the sound velocity is U, = 4 x / N ,  independent of the order k of 
representation. We observe that vs is double of that appearing in the homogeneous model 
(k = 1) [12,161. This fact can be easily interpreted by noting that the elementary translation 
‘cell’ of the altemating mixed models is double that of a homogeneous system. Indeed, 
considering this discussion and the previous results of [12,16] (assuming independence of 
k )  leads us to guess that us = 4 x / N ,  with no need of an explicit computationt. 

In the next section we are going to compute the conformal anomaly which defines the 
class of universality of these conformal mixed G L ( N )  models. 

t In fact, for an alternating model with periodicity 1 (made by a collection of ‘spins’ operators at different order 
of representatin). we should have U, = 2lnJN. 
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3. The thermodynamics of the mixed GL(N)  model 

In order to discuss the thermodynamic properties we adopt the thermodynamic Bethe 
ansatz approach originally proposed by Yang and Yang 1171. This method is based on 
the minimization of the free energy and takes advantage of the integrability through the 
Bethe ansatz equations. The first step is to notice that the Bethe ansatz equations (7) admit 
the same string hypothesis used previously by Takahashi [18] in the isolmpic Heisenberg 
model. This observation allows us to conclude that, in the L --f 03 limit, the parameters are 
A;. organized in stn'ngs of the type described'in equation (13). Substituting equation (13) 
into equation (7) and taking the thermodynamic lit, we are able to obtain the following 
infinity set of coupled integral equations for the densities U:@) (%(A))of particles (holes) 

S R Ahdim and M J Martins 

where n indicates the length of the n-stn'ng, and (f * g) (x )  denotes the convolution 
(1/2n).f%f(x - y)gCy)dy. The functions An.j(A). &,+(A) and h . . j @ )  are easily 
represented in terms of their Fourier transforms. Defining the Fourier component of a given 
function f ( x )  by f(o) = (1/2n)j-:dr e-iorr f ( x ) ,  we have the following expressions for 

A n J  , = coth(~o~/~)[e-l~-~ll"l/~ - e-(n+j)14/2] (18) 

Br,+(Wf = &,, - P(@Yr,r, (19) 

@n,j/Z(@) = A n , j ( o ) ~ ( o )  (20) 

An.j(o),  B , r , ( o )  and @n,j (o)  

where p ( o )  = 1/2cosh(o/2) and Z,,+ is the incident matrix of the A N - ]  Lie algebra. 
The second step is  to encode the temperature T via minimization of the free energy 

FsW = E v  - TS. By using a standard procedure [17-20] the energy E m  and the 
entropy S can be Written in terms of the densities of particles @:(A)) and holes (:;(A)). 
After the minimization, G F W  = 0, we get the following thermodynamic Bethe ansatz ('IBA) 
equations 

N - 1  

€;(A) = K&)(&.I + &,d + T %..A * IWl+ exp(cC/T))l(A) 
I' 
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One possible way to calculate the central charge of a conformally invariant system is 
by analysing the low-temperature. behaviour of the respective free energy. The universal 
behaviour of the free energy is given by [21,5] 

(2.5) 

It turns out that equations (21) and (24) allow us to make an exact calculation of such 
low-temperature behaviour. We first define the shift ?, -+ ?, - ( N / ~ x )  ln(NT/2n), taking 
the derivative in A of equation (21) and after some few standard manipulations [19] the 
T + 0 limit can be expressed in terms of the dilogarithm functions L(n) by 

F/L = E ,  - ncT2/6vS. 

(26) 

where 

e =  X and L ( x ) = - L l d t [ I n O ) +  ln(1 - t) 
N + k - 1  X 2  1 - t  f 

Using some identities for the sum of the dilogarithm function proved in [22], we finally 
have 

T 2  (N - l)((N f 2)k - 2) 
24 N + k - 1  

FSm/L = ekm - - 

Comparing equations (25) and (27), we find that the central charge is c = (N - 1)((N + 
2)k - 2 ) / ( N  + k - 1). Remarkably enough, this conformal anomaly can be decomposed in 
terms of the central charges of two SU(N) WZWN models with topological charge = 1 
( c =  N - l ) a n d i = k - l  ( c = ( N 2 - l ) ( k - 1 ) / ( N + k - 1 ) ) .  Thisresultgeneralizessimilar 
decomposition mentioned by the authors [lo] for the SU(2) mixed Heisenberg model. In 
order to give extra support for this value of the tend charge, we present some numerical 
results for the finitesize effects of the ground state energy in appendix B. 

4. Discussions on possible generalizations 

It is almost evident that all ow discussion in section 2 can be generalized to an arbitrary 
representation of order k in the auxiliary space of states. The main technical difficulty is the 
explicit construction of the non-isomorphic vertex operator R;:&). The solution of this 
problem has already been considered in [ l l ]  for arbitrary finite representations of GL(2) 
Lie algebra The vertex R f j ( f i )  is expressed as a linear combination of certain projectors 
defined on the subspaces of the Klebsch-Gordon decomposition of GL(2)k c3 GL(2)y. The 
transfer matrix Tk,p(&) is then defined by 

(28) 

The eigenvectors and the eigenvalues of the associated one-dimensional Hamiltonian 
Hk,p can be determined by using the following strategy. We first define an auxiliary transfer 
matrix TF$(fi) which commutes with G,&) as 

T~.dfiL) = T~v.,IR~,'(~~L)R~,'-,~) ... R ! . ~ P ) $ , , W .  
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This definition has the advantage of reducing the auxiliary space to its fundamental 
representation, hence the standard QIS formalism can be applied. On the other hand, the 
eigenvalues of %,E@) can be related to those of Tky@) by certain commutators of &(p) 
and the usual QIS B(p)  operator [ 191. The eigenvaiues of the Hk,k, are parametrized by the 
Bethe ansatz equation 

A j  - ikj2 A j  - ik'j2 L'2 A ~ - A , - ~  ( Aj + ik/2) ( Aj + ik'/2) = - l=I n A ,  J - A[ + i 
where f i j  = iAj - 1/2 and the eigenvalues Ek,r are determined by 

Analogously to what we have discussed in section 2, a similar approach works for 
Tp,k(fi) and the conformally invariant quantum Hamiltonian can be defined through the 
product '&y( f i )T~ , ,~ ( f i ) .  Considering the results of section 2 and those of I l l ]  on the 
Yang-Bater solutions for the G L ( N )  group, it seems plausible that similar conclusions 
reached for N = 2 can be extended for an arbitrary value of N .  Comparing the left-hand 
side of equations (7) and (30) in the case of N = 2, we observe that a certain factor 112 has 
been replaced by kj2. ?his leads us to conjecture that a similar mechanism should work for 
a general mixed G t ( N )  system. Taking this fact into account and writing equation (7) in 
a more convenient way, we conjecture that the form of a GL(N)k 8 GL(N)k, Bethe ansatz 
equation is 

A; - iS,.lk/2 A: - iS,,lk'j2 L/2  N - 1  M' A' - A{ - ic,,,/2 

f = I  /=I J (A; + iS,.,k,Z)li2 (A; + iS,,1k'/2) =- - A: + iC,,,1/2 (32) 

where C,,. is the AN-]  Cartan matrix and the eigenvalues EsYm of the conformally invariant 
Hamiltonian are given by 

It is not surprising that the structure of the Bethe ansatz equation is closely related to 
the A N - ]  Lie algebra. In the case of homogeneous vertex models (k = k'), the authors of 
[U] have conjectured that the same structure will remain for all semi-simple A, D, E Lie 
algebrast. In fact in [24] this conjecture has been verified by an explicit computation in 
the case of a D,, Lie algebra. Based on these observations, let us assume that the same 
conjecture can be extented to the case of non-homogeneous (k@k') models. It is not difficult 
to verify that the associated TBA equations are similar to the system of equations (21). We 
just have to replace l,,,, and N in equations (21) by the incident mahix and the rank of the 
corresponding A ,  D, E Lie algebra. Interestingly enough, these equations can be cast in a 
rather useful form which will be helpful in the analysis of the low temperature. Defining the 

t This faa is related to (he idea that the classification of the solutions of the Yang-Baxfer equations is somehow 
connected to the elassificadon of the Lie algebras and their automorphism. 
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function Y;(A) = exp(-c;(A)/T), making several manipulations in the Fourier transform 
of equation (21) and Fourier transforming back we find the following expression 

Yi(A + i/2)Y,'(A - i/2) n [ I  + Y;'(A)]-fr,' n [ l  + l/Y,r(A)lf",' 
,'EC j s A m  

= exp(2NWr,1(6.,k + &,k,)/T) (34) 

where r' is an index characterizing the nodes of the Dynkin diagram of the G E A, D ,  E 
Lie algebra and j is a similar (unrestricted) index for the A, Lie algebra. 

Equation (34) defines a set of functional hierarchy relations for the functions Y,'(A). 
The possibility of constructing such functional relations from the TBA equations was first 
noted by Zamolodchikov [ E ]  in the case of the diagonal system of scattering S-matrices. 
It also appears that certain functional hierarchies play the keystone in the computation 
of critical dimensions in integrable lattice models [26]. In our case they encode all the 
necessary information in order to obtain the low-temperature behaviour of the free energy. 
Proccedmg as in section 3, we can show that the T -+ 0 limit of the free energy assumes 
the following form 

(35) 

where rG and hc are the rank and the dual Coxeter number of the Lie algebra G, and 

The constants y,!(m) satisfy the equation 

where I,,,, ( l i , j )  is the incident matrix of the Lie algebra G (Am). 

has been conjectured to have the expression 
Remarkably enough, the sum of dilogarithm function [22,27] appearing in equation (34) 

Although the proof of last identity was essentially given for the A and D Lie algebras, 
it can be verified directly by numerically solving equation (36) for several small values of m 
and hc [27,6]. Using this dilogarithm sum and taking into account that now U, = 4 n / h ~ ,  
we finally obtain the following central charge 

rck(hc 4- 1) rc(k' - k)(hc + 1) 
C =  

h c + k  + hc+k ' -k  

where we have already decomposed the result in terms of the central charge of two G 
invariant WZWN models with topological charges = k and = k' - k. respectively. In 
particular for K = k we recover the known conjecture that rational isomorphic vertex models 
are in the class of universality of WZWN field theories [GI. 
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5. Conclusion 

In this paper we have discussed the critical behaviour of conformally invariant mixed G L ( N )  
spin chains. The central charge of an alternating model with ‘spin’ operators at order k 
(k‘) of representation acting on even (odd) sites can be decomposed in terms of WZWN 
6eld theories with topological charge k and k’ - k (k’ t k) .  We have also considered the 
generalization of this result to other symmetric representations of the A ,  D, E Lie algebras. 

Another possible extension of the results of this paper is to consider a collection of vertex 
operators at different representation distributed on a line of size L and with periodicity 1 .  
The associated rotational symmetric transfer mahix can be defined as 

S R Alodim and M J Martins 

i=l 

Following ow considerations of sections 3 and 4, the basic change in the TBA equations 
is that the right-hand side of equations (34) is replaced by 2rS(A)8,,1 E;=, G,,k/T. For 
instance, taking the following ordering kl < kz c ... < kj, the central charge of the 
one-dimensional Hamiltonian associated with the system (39) will be 

where c(k) is the central charge of the A ,  D, E WZWN model with topological charge k.  
Finally, it would be interesting to study the full operator content of these models and, 

in particular, to understand the decomposition of equation (40) in terms of the bosonic and 
parafermionic fields of the WZWN theories. We notice that for the sequence ki+l - ki = 1 
and k, = 1, the central charge is 1 multiplied by the rank of G and hopefully the operator 
content will be determined by lrc coupled bosonic fields. 
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Appendix A 

Following the basic steps of the QLS method we propose a set of eigenstates 19) defined 
by [2,3,141 

19) 5 $(pi ,..., P A )  = Fj, ...jMI B”(pi)...~’M’(p~,)lO) (A.1) 

where 10) is the pseudo vacuum (see equation (5)). The next step, motivated by the properties 
of rl .~(p) lO),  is to decompose the mondromy matrix as 

where i ( j )  is a row(co1umn) index, i ,  j = 1 , .  . . , N - 1. 
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It follows from the identity F,k(p) = Tr,e)[r1&)1 that 

fi,dfi)I$) = [ A O L ) + ~ D i i ( ~ ) l l $ I )  = 4 w L ,  I ~ f l ) l $ ) .  64.3) 

In order to find the eigenstates I$) and the eigenvalues A(@, ( f i f ] )  we also need the 
commutation relation between the A(p) ,  Bi(h)  and D"(p) operators. These relations 
follows from the relation 

(A.4) ij(II' - !J)Ti,&') C3 Wb) = r1,dII) @ ri,k(P')i:(fi'- P)  

where l?; (p) = PR; (p). Using equations (2). (A.2) and (A.4) we have 

where [Rl(p' - p ) ] F j l l  are the GL(N - 1) mahix elements of the ma& defined in 
equation (2). 

From equations (A.l), (A.4) and (AS) it follows that 

. .  
where ~ ( p )  = ( p  + 1)'/2(p+ i(k + 1)'/', d b )  = p'/'(p - L(k 2 - I))'/' and t(')i;:::$: are 
matrix elements of the following operator 

f(')(p; ILL;)) = E[R;,MI(II - p h , ) ~ ~ - l ~ . ' . R ~ , l ( p - ! ~ ~ ) ~ ~ - , l l  (-4.7) 

and Fil%1 are the eigenvectors' component of to)&) with eigenvalues A(')(p, {pf ) ) .  
UT stands for 'unwanted terms' which appear due to the interchange of the arguments 

p and p' in the relation (AS). When these terms are null, I$) becomes an eigenstate of 
Tl,k(k) and, as a consequence, we obtain a restriction to the rapidities p (the Bethe ansatz 
equation). Finally, equation (A.7) is solved by introducing in each step i = 2, . . . , N - 1 
a new matrix t ( i ) @ )  acting on M(') sites, analogously to that of equation (A.7). The final 
result for the eigenvalues A(@) of q,&) and ACr)(p, {$']) of t ( ' ) ( j~)  are 

Equation (7) is then obtained by imposing the zero residue condition in equation (A.8). 
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Appendix B 

The critical behaviour of a confomally invariant theory can be delermined by studying 
the consequences of the finite-size L effects for the eigenspectrum [B]. For example, the 
central charge is related to the ground-state energy EsY"(L) by [21,5] 

S R Aladim and M J MaHins 

The central charge c can be numerically calculated by extrapolating the sequence 

In table A1 we present our estimates for the sequence (B.2) in the case of N = 2,3  
(the N = 2 data have been already presented by us in [lo]) and k = 3. We note that these 
numerical results are in accordance with the TBA analysis of section 3 (equation (27)). In 
our numerical analysis we have also observed that the case k = 2 is rather special. The 
string hypothes is (A; = e,! f i/2) is almost exact for large enough L, presenting a very 
unusual small correction [8,10]. In this case we can use the analytical method in [29] and 
conclude that the central charge is c = 2(N - 1) (in agreement with equation (27)). 

Table Al. The es t imes  of the cenhal charge of equation (B.2) for k = 3 and N = 2 or N = 3. 

L N = 2 , k = 3  L N = 3, k = 3  

8 2.839 364 12 5.614 431 
16 2.602543 24 5.336131 
24 2.556301 36 5.277662 
32 2.538530 48 5.254475 
40 2.529 503 60 5.242437 
48 2.524 142 72 5.235 167 
Extrapolated 2.500(6) Extrapolated 5306(1) 
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