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The class of universality of integrable and isotropic GL(N)
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Brazil

Received 15 June 1993

Abstract. We discuss a class of transfer matrix built by a particular combination of isomorphic
and non-isomorphic GL(N) invariant vertex operators. We construct a conformally invariant
magnet constitated of an alternating mixture of GL{N) ‘spins’ operators at different orders of
representation. The corresponding central charge is calcnlated by analysing the low-temperature
behaviour of the associated free energy. We also comment on possible extensions of our results
for more general classes of mixed systems.

1. Introduction

One of the most useful methods of constructing an integrable one-dimensional quantum
spin chain has been to find solutions of the Yang-Baxter [1,2] equations. In the context
of the lattice models, such solutions define vertex operators acting on the tensor product of
two vector spaces V ® h, of the local states on the horizontal and vertical lines of a given
site o of the two-dimensional lattice, The complete Hilbert space of the model on a lattice
of L sites is ]'[f,;=1 ®h,. The vector space V is an auxiliary space which is useful in the
definition of the associated transfer matrix. Defining R;:’, < (&) as such vertex operator, the
corresponding transfer matrix can be expressed by {2, 3]

T(u) = Try[RY L(IRY L (1) -+ RY 1 (12)] (1)

where the trace is carried out in the auxiliary space V and u is a variable which parametrizes
the Yang-Baxter solution.

A class of important solutions of the Yang-Baxter equation is isomorphic on the
horizontal and vertical spaces (V = h,) and rational on the spectral parameter . One
example is the vertex operator composed of generators which are invariant by some of
the semi-simple A, D, E Lie algebra at a certain order k of its representation. The main
feature of these solutions is that they are believed to define conformally invariant quantum
spin chains [4-6] which realize the class of universality of Wess—Zumino—Witten—Novikov
(wzwn) [7] field theories with topological charge k. Recently, de Vega and Woynarovich
[8] have pointed out that other interesting classes of conformally invariant models can be
constructed. These theories are obtained by combining isomorphic and non-isomorphic
vertex operators invariant by some group symmetry at different orders of representation.
As a typical example one can consider an alternating combination of an isomorphic vertex
at even sites and non-isomorphic operators at odd sites. Considering that the isomorphic

. s ¥ !
(non-isomorphic) vertex operator acts on the vector space V& @ 2% (V® @ 2%)) of order
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k and k', the theory described above will lead to a mixed magnet chain with ‘spin’ operators
of order k and k. Following this approach, de Vega and Woynorovich [8] have constructed
an alternating anisotropic Heisenberg chain of spins 1/2 and 1 and analysed its behaviour
in the thermodynamic limit. More recently, the central charge of the conformally invariant
isotropic SU(2) mixed chain has been computed independently in [9, 10] for spins 1/2-1
and 1/2-S, respectively.

Its seems interesting to investigate the critical properties of conformally invariant mixzed
spin chain for a more general class of group symmetry and its possible relations with
wzwN field theories. In this paper we study an isotropic alternating GL(N) model in
which the isomorphic vertex is in the fundamental representation (¢ = 1) and the non-
isomorphic operator is defined in the tensor space product of the fundamental and the order
k of representations. By using the thermodynamic Bethe ansatz, we have calculated the
associated central charge in the case of a conformally invariant mixed GL(N) system. It
is noted that this central charge can be decomposed in terms of the conformal anomaly of
two WZWN theories with different topological charges & = 1 and & = & — 1, respectively.
We also discuss the generalization of our results in the case of semi-simple Lie algebras at
arbitrary symmetric representation.

This paper is organized as follows. In section 2 we define the GL{N) mixed magnet
and we discuss its diagonalization by the quantum inverse scattering (QIS) formalism. In
section 3 we use the thermodynamic Bethe ansatz (TBA) approach in order to investigate
the low-temperature behaviour of a conformally invariant mixed GL(N) system. Section
4 is devoted to our discussion on possible extensions of the results of section 3 to other
Lie algebras. Section 5 contains our conclusions. In appendixes A and B we summarize
some details of the QIS approach and we present extra numerical checks of the finite-size
behaviour for the ground-state energy, respectively.

2. The mixed GL{IN) infegrable model

A rational GL(N) invariant vertex operator has been found by Kulish e al [11] in their
study of group invariant solutions of the Yang—Baxter relation. The GL(N) non-isomorphic
vertex defined on the fundamental and on the symmetric order k of representation is given
by the expression {11]

Rl =p—(k-1/2+Y e @E] -
0]

where e”/(E") are the generators of GL(N) in the fundamental (order k) representation,
For the fundamental representation the matrix elements of ¢ are (€'Y = 8,8, We also
notice the identity R}'u(ﬂ) = P, where P is the permutation operator PV @ hy =h, @ V.

The GL(N)} mixed system is defined in terms of its transfer matrix of alterpating
isomorphic (k = 1) and non-isomorphic vertex operators by

Tia(w) = Trvolne@)]  7ele) = R GORy () R JGORE (1) ©)
where the matrix product and the trace are defined in the auxiliary space V(I of the elements

'/ and 1) (i) is the so-called monodromy matrix. The associated one-dimensional quantum
Hamiltonian acting on the Hilbert space ]'[i’=1 h, is determined by the logarithm derivative
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of the transfer matrix, By = Jd[In{T ()]l =0/dps. By using this relation and some
properties of the GL(N} group we find

Hi=7 Z [ Z eb— {EM E“ n-t-l = -1) Z(e lEﬂ €ari +°’n— E:{' n+1)

n-odd Ljdum il
k—I
( ks Z en_ 16041 +}:(e VEf + E‘Je,,ﬂ)—(k—n]
JL 2
2 (1+k+1) “)

where J = 4J/(k + 1)*> and we have conveniently added an extra constant ~JZ(1 +
2/k +1)/2. In this paper we are interested in the antiferromagnetic properties of this
model, and therefore we have chosen J = 1. Setting £ = 1 in equation (4) we reproduce
the resuits of [12,13] and for ¥ = 2 and k = 25 we recover previous calculations for the
mixed Heisenberg chain [8-10].

The diagonalization of the transfer matrix T} 4(u) (or the one-dimensional Hamiltonian
H ;) follows from the generalization of the QIS approach [3] applied to multi-state vertex
models [13-15]. In the QIS construction the definition of the pseudo vacuum and the block
form of the monodromy matrix are two important ingredients of this method. In our case
the psendo vacuom 10} is defined by

=10 ®10;®---®10)_, ® 0 (5)

where |0)% is the vector of highest weight of the GL(N) algebra at order k of the symmetric
representation acting on the site e, namely Ed [0)% = &5;,5;1|0)%. An important property
of this state is that 71 x(u)|0} has the following block triangular form

_ e+ DM+ &+ 1)/ B (u)
T {1} 0) = ( 0 8. (}L)sz(].b —(k— 1)/2)1./2 |0} (6)

where Bf(p) =ty () i=1,..., N~ 1.

Following the QIS machinery [13-15] a certain linear combination of the states
BA(uly. .- B#(u!)|0) can be considered as a basis for the eigenstates of the transfer
matrix, provided that the parameters {,u.},---,p.},} satisfy a set of non-linear equations
denominated Bethe ansatz equations. The technical steps are fairly parallel with those of
[13-15] and in appendix A we have collected some of the details. Defining the convenient
shift u] = iA] — /2, the Bethe ansatz equations are given by

A —i/2\*? (AL —ik2\"
A +if2 A +ik/2
M — Al =i M AL A2 i/2 M - A i

= -]+

1 A}—x}+i,1:!x}—x?—i/2g1§“k{+i

MO = A /2 M - — /2

7
,13 M= AT +if2 [ A=A Hi2 ?
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where r =2,..., N — 1 and we define MY = 0. The eigenvalues of the Hamiltonian Hj
are parametrized by

M‘l
1
E = — —_—
L ;I (Ah+ (1722 ®

In principle, the construction discussed above can be carried out for the ‘dual’ one-
dimensional Hy) spin chain. The main task is to find an isomorphic GL(¥N) invariant
operator R,’;a (1) in the symmetric representation of order £. Using the approach of [11],
Johannesson [16] has explicitly exhibited such operator. Hence, analogously to equation
(3). the associated transfer matrix T; ; (j2} is expressed by

T (1) = Trym [z, ()] 1) = RE L(IRE () -+ RELQORE () )

where V® is the space of the matrices E¥ of GL(N) at order k of representation.

An important property of Ty , (i) and T ;{u') is their commutativity for arbitrary values
of the parameters & and p’. This property follows from the ‘mixed’” Yang-Baxter relation
satisfied by the non-local vertices} Rf(p,) and R}(u). As a consequence, the Hamiltonians
Hix and Hy) can be simultaneously diagonalized and their eigenspectrum are parametrized
by the same Bethe equations, i.e. equations (7). However, the eigenenergies of Hy; [16]
are expressed in terms of the variables {A}} by a different function of that of equation (8),
namely

M k
= T AR (o

At this point, it is important to remark that the transfer matrix Tj () and its ‘dual’
Ti1(u) are not rotational invariant in the horizontal/vertical space of states. A simple
way of defining [8] a “mixed’ symmetric transfer matrix T%™(u), preserving the rotational
invariance, is by formally multiplying these two transfer matrices

Ty = T o () T 1 (). (11}

Due to the commutativity between Ty (i) and T 1 (1) the spectrum of T (i} is clearly
parametrized by the same Bethe ansatz equation and the eigenvalues of the corresponding
one-dimensional Hamiltonian H*Y™ are added,

H]
sym _ __ k
ES Z (A. 32 4 (1/2)2 JE_—:: (3_})2 + (fc/2)2‘ (12)

In this sense equations (7}, (8), (10) and (12} define three families of possible spectrums
parametrized by a single Bethe ansatz equation. For instance, in the case of small size
L, one only needs to solve equation (7) and compare it with the exact solution of the
spectrum of H) x in order to investigate the structure of the variables {A]} which are going
to parametrize the whole spectrum of all these three families of models. In general, we
remark that a certain solution {A}} of equation (7) will not necessarily produce the same ith

7 The vertex Rfr(u} acts in the non-local space v @,
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state ordered in energy for all these models. The ground state, however, is characterized by
the same structure of {JL; } for all these three families. In the thermodynamic limit, L — oo,
the ground—state solution {A} is composed by a mixture of real numbers n; and a set of
complex roots A} . The complex structure A}, cluster in the so-cailed k-string form

Me=&+3ik+1-20) a@=12,.k (13)

where £] is a real parameter denoting the centre of the k-string.

In order to calculate the ground-state energy in the L — oo limit, one has to solve the
Bethe ansatz equations (7) for the variables } and £/. Taking into account equation (13)
and after some standard manipulations, we are able to compute the following values for the
ground-state energy per particle

e - E-l42aVy L (REL
e = N[w(n wu/mw( 5 ) w(w)] (14)

1+2 AW
o —%[Wl)— (k/N)-i—W(_—;—N) w(%)Jrzﬂ o

i=t

i

where ¥ (x) is the Euler psi function. From equation (12) it s clear that ey = el + %!

Let us now concentrate our attention on the low-lying excitations of the symmetric mixed
model. Since the transfer matrix 7*™(y) is rotational invariant, its associated quantum spin
Hamiltonian is a strong candidate to be conformally invariant. We recall that the analysis of
the critical properties in spin chains depends on the behaviour of its dispersion relation for
low momenta p. The computation of the dispersion relation follows the standard formalism
of perturbing the ground-state structure by holes and string of arbitrary length (see e.g.
[12]). The only subtle fact is that in this alternating mixed system the iotal momentum is
half of that considered in homogeneous models (¢ = 1) [10]. Following [12, 16, 8] we find
that the dispersion relation for all branches of excitations {12, 16] possess the same linear
behaviour for the total low momenta p

4
£(p) = Fn”' (16)

From equation (16) the sound velocity is v, = 4x /N, independent of the order &k of
representation. 'We observe that v is double of that appearing in the homogenecus model
{k = 1) [12, 16]. This fact can be easily interpreted by noting that the elementary translation
‘cell’ of the alternating mixed models is double that of a homogeneous system. Indeed,
considering this discussion and the previous results of [12, 16] (assuming independence of
k) leads us to guess that vy = 4w /N, with no need of an explicit computationf.

In the next section we are going to compute the conformal anomaly which defines the
class of universality of these conformal mizxed GL{N) models.

+ In fact, for an alternating model with periodicity ! (made by a collection of ‘spins’ operators at different order
of representation), we should have v, = Un /N,
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3. The thermodynamics of the mixed G L{N) model

In order to discuss the thermodynamic properties we adopt the thermodynamic Bethe
ansatz approach originally proposed by Yang and Yang {17]. This method is based on
the minimization of the free energy and takes advantage of the integrability through the
Bethe ansatz equations. The first step is to notice that the Bethe ansatz equations (7) admit
the same string hypothesis used previously by Takahashi [18] in the isoiropic Heisenberg
model. This observation allows us to conclude that, in the L —» oo limit, the parameters are
M} organized in strings of the type described in equation (13). Substituting equation (13)
1nto equation (7) and taking the thermodynamic limit, we are able to obtain the following
infinity set of coupled integral equations for the densities o (A) (& (A))of particles (holes)

N—-1 o0

Gy = ——[¢., 1720 + Gnap2 (M) — Z ):(AM *Bo ol )A)  (I7)
r=l j=

where n indicates the length of the s-string, and (f * g)(x) denotes the comvolution
(1/2m) {2, F(x — ¥)g(¥)dy. The functions An;(A), Bro(A) and ¢ ;1) are easily
represented in terms of their Fourier transforms. Defining the Fourier component of a given
function f(x) by flw) = (1/2x} [°o, dx €7 f(x), we have the following expressions for
An,j(@), Byr(w) and ¢, ; ()

Ap (@) = coth(lmllz)[e—lﬂ-"ﬂlwlﬂ - e-(n+j)lw1/2] (18)
Br.r’ (w) = sr,r‘ -pP (w)lr,r’ (19)
Pn, j12(@) = Ap j(@)p(w) (20}

where p(w) = 1/2cosh{w/2) and I+ is the incident matrix of the Ay_; Lie algebra.

The second step is to encode the temperature T via minimization of the free energy
FM = EM _ TS, By using a standard procedure [17-20] the energy E*™ and the
entropy S can be written in terms of the densities of particles (o, (A)) and holes (57 (A)).
After the minimization, § F*™ = @, we get the following thermodynamic Bethe ansatz (TBA)
equations

N-1 )
) = Er(W) a1 +6n) + T Y @rp + [In(1 + explel / THIA)
rl

N-1
+ Ty e # (01 + explely / T)) + In(l + explel_, /THIR) @

where &) (A) /o] (L) = exp(e,(3}/ T), eg(A) = 0, and the Fourier component of the functions
K (3), ¢rr(A) and @, () are given by
K (w) = P(@)B:II (@) (22)

@rr (@) =8p — B;rlf @r,r(@) = p(w) B, rr' (23)
Finally, the equilibrivm free energy F™™ is given by

oa N-1
FOYR /L = ™ — % dA Z K, ()[n(1 + exp(e](A)/T)) + In(1 + exple; (A)/ TH]

-0 r=1

@29
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One possible way to calculate the central charge of a conformally invariant system is
by analysing the low-temperature behaviour of the respective free energy. The universal
behaviour of the free energy is given by [21,5]

F/L = oo — wcT? /605, (25)

It turns out that equations (21) and (24) allow us to make an exact calculation of such
low-temperature behaviour, We first define the shift A — X — (V/27) In(NT/2x), taking
the derivative in A of equation (21) and after some few standard manipulations [19] the
T — O limit can be expressed in terms of the dilogarithm functions L(x} by

—1 k=2 s .
5 = gYm _ _ sin[(k — m — 1)8]sin[m8] )
Fm/L = o l:(N De- Y > (sin[(m W D

r=1 m=
(26)

where

T 3 In(z) In(l—1)
o= =_= _
Nir-1 o LW xzfo d’[l—r+ ; ]

Using some identities for the sum of the dilogarithm function proved in [22], we finally
have

T2 (N = DN + 2k —2)
24 N+k—1

Comparing equations {25) and (27), we find that the central charge is c = (N —1)((N +
)k ~2)/(N +k — 1). Remarkably enough, this conformal anomaly can be decomposed in
terms of the central charges of two SU(N) WZWN models with topological charge E=1
(c=N—-1andk =k—1(c = (N*>=1)(k—1)/(N+k—1)). This result generalizes similar
decomposition mentioned by the authors [10] for the SU(2) mixed Heisenberg model. In
order to give extra support for this value of the central charge, we present some numerical
results for the finite-size effects of the ground state energy in appendix B.

F¥S)L = e — @7

4, Discussions on possible generalizations

It is almost evident that all our discussion in section 2 can be generalized to an arbitrary
representation of order k in the auxiliary space of states. The main technical difficulty is the
explicit construction of the non-isomorphic vertex operator R,"ﬁ ;). The solution of this
problem has already been considered in [11] for arbitrary finite representations of GL(2)
Lie algebra. The vertex Rf: (12} 1s expressed as a linear combination of certain projectors
defined on the subspaces of the Klebsch—Gordon decomposition of GL(2), ® GL(2)k. The
transfer matrix T p (@) is then defined by

Tese (1) = Teyw [RE L (UIRE (o (1) -+ RE (IR (). (28)

The eigenvectors and the eigenvalues of the associated one-dimensional Hamiltonian
Hi p can be determined by using the following strategy. We first define an auxiliary transfer
matrix T2% (i) which commutes with Tj (1) as

;; i (}1.) TTV(D[R;; L(P-)Rk' - 1(!»5) };,z(ﬁ*’-)R}ly,] {w]. (29)
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This definition has the advantage of reducing the auxiliary space to its fundamental
representation, hence the standard QIS formalism can be applied. On the other hand, the
eigenvalues of T ¢ (1) can be related to those of T (1) by certain commutators of 7y ¢ (1)
and the usual Qi B(u) operator [19]. The eigenvalues of the /) ,/ are parametrized by the
Bethe ansatz equation

(A,—ik/z)m A — ik 2\ ﬁx,-—x,-i ”
A +ik/2 MAik2) T RA A - A+ )

where p; = iA; — 1/2 and the eigenvalues Ej ; are determined by

¥ k
B == ) G G Gl
Analogously to what we have discussed in section 2, a similar approach works for
T 1 (1) and the conformally invariant quantum Hamiltonian can be defined through the
product Tj p(1)7p 2 (). Considering the results of section 2 and those of [11] on the
Yang-Baxter solutions for the GL(N) group, it seems plausible that similar conclusions
reached for N = 2 can be extended for an arbitrary value of N. Comparing the left-hand
side of equations (7) and (30) in the case of N = 2, we observe that a certain factor 1/2 has
been replaced by k/2. This leads us to conjecture that a similar mechanism should work for
a general mixed GL(N) system. Taking this fact into account and writing equation (7) in
a more convenient way, we conjecture that the form of a GL(N); ® GL{)y Bethe ansatz
equation is

) L2 , Lf2 L
A = ibeak/2\ (3 ~ 84k /2 H‘ﬁ MM —iCp/2 (32)
W+ 18,,1k/2 A+ 18,1K7/2 A~ M +iCr /2
" r

=]{=1 "j

where C, - is the Ay _; Cartan matrix and the eigenvalues E*™ of the conformally invariant
Hamiltonian are given by

M p)
k
sym o E E : —
g O+ &/22 {m)z S0P+ /2 2

It is not surprising that the structure of the Bethe ansatz equation is closely related to
the Ay_; Lie algebra. In the case of homogeneous vertex models (k = k'), the authors of
[23] have conjectured that the same structure will remain for all semi-simple A, D, E Lie
algebrasf. In fact in [24] this conjecture has been verified by an explicit computation in
the case of a D, Lie algebra. Based on these observations, let us assume that the same
conjecture can be extented to the case of non-homogeneous (k®k") models. It is not difficult
to verify that the associated TBA equations are similar to the system of equations (21). We
just have to replace /, » and V in equations (21) by the incident matrix and the rank of the
corresponding A, I, E Lie algebra. Interestingly enough, these equations can be cast in a
rather useful form which will be helpful in the analysis of the low temperature. Defining the

{ This fact is related to the idea that the classification of the solutions of the Yang-Baxter equations is sormehow
connected to the classification of the Lie algebras and their automorphisms.
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function ¥;(A) = exp(—e;(A)/T), making several manipulations in the Fourier transform
of equation (21} and Fourier transforming back we find the following expression

Vi +i/2¥ 0 - /2 [T+ 7™ [T 1+ 1v7 e

reG JeAo
= exp(2n8(A)8r1(8nk + Sn )/ T) (34)

where r' is an index characterizing the nodes of the Dynkin diagram of the G = A, D, E
Lie algebra and j is a similar (unrestricted) index for the A, Lie algebra.

Equation (34) defines a set of functional hierarchy relations for the functions ¥ (A).
The possibility of constructing such functional relations from the TBA equations was first
noted by Zamolodchikov [25] in the case of the diagonal system of scattering S-matrices.
It also appears that certain functional hierarchies play the keystone in the computation
of critical dimensions in integrable lattice models [26]. In our case they encode all the
necessary information in order to obtain the low-temperature behaviour of the free energy.
Procceding as in section 3, we can show that the T — 0 limit of the free energy assumes
the following form

2
P = e - e[ o= LI LAIHO - T 3 LO/1+ 5~ )

reG jed; reG jedy
(35)
where rg and A are the rank and the dual Coxeter number of the Lie algebra G, and
. - .
eyt = — f dwm[@ x/2() + P per2 () + 2¢p 1 p2(w)).
The constants y](m) satisfy the equation
ym? =TT+ o1 JT 11+ 175 em1 (36)

reG i€An

where I+ (I; ;) is the incident matrix of the Lie algebra G (A,).
Remarkably enough, the sum of dilogarithm function [22, 27] appearing in equation (34)
has been conjectured to have the expression

>3 LA/ + ymy = D), )

reG jeAq hg +m

Although the proof of last identity was essentially given for the A and D Lie algebras,
it can be verified directly by numerically solving equation (36} for several small values of m
and kg [27,6]. Using this dilogarithm sum and taking into account that now v, = 4m/hg,
we finally obtain the following central charge

_ reklhg +1) | re(k’ — K){hg + 1)
T hg+k he+k —k

where we have already decomposed the result in terms of the central charge of two G
invariant WZWN models with topological charges k=kandk =¥ —k, respectively, In
particular for ¥’ = k we recover the known conjecture that rational isomorphic vertex models
are in the class of universality of WzwN field theories [4-6].
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5. Conclosion

In this paper we have discussed the critical behaviour of conformally invariant mixed GL(N)
spin chains. The central charge of an alternating model with ‘spin’ operators at order k
(k") of representation acting on even (odd) sites can be decomposed in terms of WZWN
field theories with topological charge & and &' — & (' > k). We have also considered the
generalization of this result to other symmetric representations of the A, D, E Lie algebras.

Another possible extension of the results of this paper is to consider a collection of vertex
operators at different representation distributed on a line of size L and with periodicity .
The associated rotational symmetric transfer matrix can be defined as

T (1) = H e IRE () - RE () -+~ RE () -+ R ) (39)

=1

Following our considerations of sections 3 and 4, the basic change in the TBA equations
is that the right-hand side of equations (34) is replaced by 2w (A)é,, Zf 1S4/ T. For
instance, taking the following ordering &1 < k2 < -+« < Kk, the central charge of the
one-dimensional Hamiltonian associated with the system (39) will be

I-1
e=Y clhiri—k)  ko=0 (40)
i=0

where c(k) is the central charge of the 4, D, £ WzZwN model with topological charge k.

Finally, it would be interesting to study the full operator content of these madels and,
in particular, to understand the decomposition of equation (40) in terms of the bosonic and
parafermionic fields of the WZwN theories. We notice that for the sequence ko — &y = 1
and k; = 1, the central charge is ! multiplied by the rank of G and hopefully the operator
content will be determined by /re coupled bosonic fields.

Acknowledgment

The work of M J Martins was partially supported by CNPq (Brazilian agency).

Appendix A

Following the basic steps of the QLS method we propose a set of eigenstates [y} defined
by [2,3,14]

I} = ul, -, gl) = Fj.p, B D) - Biwt (ul,)i0) (A1)

where [0} is the pseudo vacuum (see equation (5)). The next step, motivated by the properties
of 71, ()]0}, is to decompose the monodromy matrix as

ta() = (é({ﬁ) g,ff{f)) (a2)

where i(j) is a row(colomn) index, i, j=1,...,N-L
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1t follows from the identity T3 z (i) = Trywm[7rz ()] that
Tl =[AQ) + Z DEG)iv) = Aw, (DY) (A.3)
In order to find the eigenstates |¥} and the eigenvalues A(g, {pc,! }) we also need the

commutation relation between the A(u), Bf(u) and D¥(u) operators. These relations
follows from the reiation

Ri(e' — myone(e) ® T10(i) = 70 (1) @ Tk (IR (1 — 1) (A4)
where R} (1) = PRI (). Using equations (2), (A.2) and (A.4) we have

BoW AL g B )AG)

A B () = B () A(u') +

(A.5)
1 ;13
D (u) B (n) = T BWIDt e + ;—- Z B () D* ()[R (' — i)y
where [Rl(u' — u)]ii;’:'” are the GL{N — 1) matrix elements of the matrix defined in
equation (2).
From equations (A.1), (A.4) and (A.5) it follows that

A} = Hﬂu—ﬁ— (v} +
i=1 ]

(A.6)

M
Dﬁ(ﬂr)llﬁ') = (l—[ " —1# )t@)lt gl Fu gyt Bl:(”}) ___B!Ml (ﬂ},{l)d(ﬁl)wf) +ur

IR
i=1 i

where a(u) = (u+ )22+ Jk + D52, d(p) = p2? (e — %(k — 1))£/2 and t‘”ijﬁiﬁ?;; are
matrix elements of the following operator

1D (u; {u} D= H’[R;,Mn(.u — ihdw-1+ - R} (1 — w11l A7)

and Fim are the eigenvectors’ component of ¢ () with eigenvalues AP (u, {,u.,? H.

UT staeds for ‘unwanted terms’ which appear due to the interchange of the arguments
p and w4’ in the relation (A.5). When these terms are null, |4} becomes an eigenstate of
Th4(j2) and, as a consequence, we obtain a restriction to the rapidities p (the Bethe apsatz
equation). Finally, equation (A.7) is solved by introducing in each step i = 2,..., N — 1
a new matrix %) (u) acting on M sites, analogously to that of equation (A.7). The final
result for the eigenvalues A(u) of Tj x(w) and A® (u, {(ul™'}) of 107 (u) are

1
A(u)—d(@ﬂ%‘*‘“ >H

@y (W
IA (s (D)

i=1 i i= 1 i
L M=t
AP G (i) = H(a A +n1‘[~'—-— (A-8)
i=1 ’u'l H
Mt

+ ]—[(u mih H A"“’(u, (.

:—.I

Equation (7) is then obtained by 1mp0sing the zero residue condition in equation (A.8).



7298 S R Aladim and M I Martins
Appendix B

The critical behaviour of a conformally invariant theory can be determined by studying
the consequences of the finite-size L effects for the eigenspectrum [28). For example, the
central charge is related to the ground-state energy E™(L) by [21,5]

EY™(L)/L = ™ — muyc/L% (B.1)
The central charge ¢ can be numerically calculated by extrapolating the sequence
c(L} = —[E¥™(L)/L — eF™]L? fmv,. (8.2)

In table A1 we present our estimates for the sequence (B.2) in the case of N = 2,3
(the N = 2 data have been already presented by us in [10]) and k = 3. We pote that these
numerical results are in accordance with the TBA analysis of section 3 (equation (27)). In
our numerical analysis we have also observed that the case k = 2 is rather special. The
string hypothes is (A} = & +i/2) is almost exact for large enough L, presenting a very
unusual small correction {8, 10]. In this case we can use the analytical method in [29] and
conclude that the central charge is ¢ = 2(N — 1) (in agreement with equation (27)).

Fable Al. The sstimates of the central charge of equation (B2} fork =3and N=2or ¥ = 3.

L N=2k=3 L N=3k=3
8 2.839 364 12 5.614431

16 2.602543 24 5336131

24 2.556301 35 5277662

32 2.538530 48 5254475

40 2529503 60 5242437

48 2524142 T2 5235167

Extrapolated 2,500(6) Extrapolated 5206(1)
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